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Th e Style of Sources 

Remarks on the Th eory and
History of Programming Languages

Wolfgang Hagen
Translated by Peter Krapp

”Le style c’est l’homme même”
—Buff on

“. . . the procedure . . . whose mastery exerts a decisive infl uence over the style and the 
quality of the work of a programmer.”

—Wirth

“Th e principles of style, however, are applicable in all languages”
—Kerningham

“A style of programming is based on an idea (possibly speculative) of a ‘calculator’ . . . which 
is to work off  the program”

—Stoyan

“Can we be liberated from the von-Neumann-style?”
—Backus

Let us begin with a thought experiment.

1. Th e Library of Modern Sources

Imagine a large library called “Th e Library of Modern Sources.” What would the blueprint for 
such a source museum look like? We might arrange departments and divide them along the large 
groups of programming languages: procedural (FORTRAN, ALGOL, PASCAL and C), func-
tional (LISP, ML or MIRANDA), declarative (LOGO or PROLOG), and a new department for 
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the object-oriented (SMALLTALK, EIFFEL, C++); parallel and neuronal languages would be in 
development. However, as a minimal condition, all sources ever written must be available as code, 
plus the descriptions and sources of all compiler-, interpreter-, and assembler-codes that belong to 
each system, including all those texts, blueprints, tables and diagrams describing the machines that 
run those codes. We would collect everything belonging to the symbolic register of our project: 
everything written, all knowledge on each code ever put into signs and sketches. Would this be 
suffi  cient? Does the history of source code include only what has been registered symbolically? 
I am afraid our library would in the end also have to include the real machines themselves, plus 
running versions of all operating systems and development platforms. Otherwise the bulk of older 
code would remain incomprehensible. But does anyone have even a minimal number of computers 
that ever ran at their disposal? No. Our collection would at best document those codes that never 
actually ran on a machine.

With regret our thought-museum would have to declare at the entrance that the history of all 
computer source code, their “historia rerum gestarum” as the Roman historians put it, coincides 
with the “res gestae,” with the events themselves. Th us our thought experiment is a logical impos-
sibility.

2. An Archive of Source Codes

Not to speak of the problem of procuring the code, the source of the sources. Where are they kept? 
Of course I have to trust the archives of Big Blue and MIT, Xerox, Apple, Microsoft , of the U.S. 
Navy and U.S. Air Force, but I doubt whether they actually kept the source codes of the UNIVAC 
or the BINAC, of the DUAL and the SHACO machines at Los Alamos, or of the IBM 701 or the 
704, or of the prototypes of these machines. We recognize a grave and fundamental problem of the 
archive. Between an abstract computer representing every artifi cial code and a real machine to be 
controlled there is at least one generational process of another machine. Some German computing 
manuals call that generic machine which compiles the source code into machine code the “transla-
tor.” Concerning the language of abstract computers, the “source,” the operation of the translator 
is like a crossing of that subterranean river that the Greeks identify with the realm of death. Th e 
transition from symbolic program-text to real machine-code kills the language which sets it in 
motion. Oft en enough, the transition is one from being (soft ware) to nothingness (hardware). To 
try to describe the running machine, and we have to do this oft en enough, we resort to another 
symbolic machine, the “assembler.” Its “dis-ensembling” debugging—a process one can set up 
even if the source is written in “higher” languages—discursifi es the running program for us into 
another, new language which has little to do with the source code. Th is path off ers only a liter-
ally ideal and deceptive continuity. In reality, there is a “breakpoint” between symbolic machines 
and their real runtime. We call that breakpoint the halt where the machine is still running and 
where we place our symbolic vocabulary in between—but we do not actually displace anything: a 
masked interrupt (i.e., a piece of soft ware which is inherent in the machine itself) is tracing and 
debugging at this location of the last communication with the machine. Hardware description 
language (HDL) may show in a diagram or in a temporal logic design how this interrupt works. If 
such breakpoints do not clarify what happens in the pipelines of machine hardware, there is still 
one last remedy left : the “post mortem dump” or post mortem debugging. In the end, a conceptual 
last judgment. “But,” as Hegel says in the Phenomenology of Spirit, “the life of Spirit is not the life 
that shrinks from death and keeps itself untouched by devastation, but rather the life that endures 
it and maintains itself in it.”1
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3. “Th ere Is No Soft ware”

At this stage, I want to point out a fi gure of secret idealism nesting in the thought of these symbolic 
connections, in the transitions and transformations of abstract machines of computer programs; 
a secret idealism that is so seductively obvious. You may fi nd the same fi gure in a number of 
American philosophers of “electric language,” such as Michael Heim or Jay David Bolter. Th ey say 
computer programs and systems are a “demanding collection of programmed texts that interact 
with each other.”2 But in real computing machines, texts do not interact: electron diff usion and 
quantum mechanic tunnel eff ects run over all chips, n-million transistor cells in n2 correlations. 
If you want to call this occurrences “interaction,” then you have to face the current technology 
production treating such interactions as systemic barriers, as physical side-eff ects, distortions, etc.3 
Symbolic soft ware programs and the real runtime actions of computing machines are not joined 
in the interference of a continued universality, as the Gutenberg Galaxy has taught us to expect, 
but diff er discontinuously, oft en almost grotesquely. If this were not the case, we would not see 
the recurring waves of painful soft ware crises on micro- and macro-levels. “If programming was 
a strictly deterministic process following fi rm rules,” the Swiss computing scholar Niklaus Wirth 
writes laconically, “it would have been automatized long ago.”4 Or else there would be, as Kittler 
provocatively put it, “no soft ware.”

4. Genealogy of Computer Media

Let us return to the early days of the computer, when one could easily assert, “there is no soft ware.” 
We do not have to discuss the fact that computers are based on the mathematical model of the Tur-
ing machine, and that this model was widely known to American scientists since the late 1930s. But 
Turing did not write about “soft ware” in 1937—he off ered a negative proof showing that a general 
algorithm for the general solution of general mathematical problems cannot be proff ered. It fol-
lows that whatever can be addressed in a fi nite description by an algorithm is positively calculable. 
Oswald Wiener’s idea of the entire world as a universe of folded Turing machines has less to do with 
Turing himself than with the impact the massive development of digital storage media has made on 
us.5 We may suspect that the number of bytes on all computers in the world has already surpassed 
the number of letters in all the books in the world. Th is entropic digression of storage media sends 
us to another mathematical model, equally responsible for the current media sea-change: namely 
Shannon’s mathematical theory of communication developed in the 1940s. Were we to situate the 
computer medium as it appears to us today in an evolutionary model—as we will try for the sake of 
the argument—then this model would project the development of three overlapping evolutionary 
complexes onto a time axis, neither interchangeable nor initially corresponding. Th ey are: 

• the mathematical model of calculability
• the engineering technique of storage development and addressing
• the mathematics and physics of communications technology. 

I hasten to add that the strangely nontransparent “terminus a quo” of our problem, namely the 
question of the origin of programming languages, could also be articulated in three sections:

1. a fi rst approach of programming languages, in the early 1950s, which follows symbolic 
contiguities, but no mathematical mode

2. in the late 1950s, the counter-movement of mathematically oriented functional and declara-
tive languages that must idealize the machine from which they abstract
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3. in the early 1970s and again in the late 1980s, the incision of simulation, marking the entry 
of earlier media (writing, image, sound) in the “computer”—making it a medium in itself. 
Th is last step leads to the object-oriented languages that are defi ned as neither procedural 
nor functional.

Th is background for a sketch of the three large groups of programming styles cannot be recon-
structed otherwise. Th us each theory of programming languages, like any media theory, observes 
one a priori, namely its own: it can only be written up as historical theory. I want to reconstruct 
the fi rst of the three steps I recognize in the development of programming languages, and thus in 
the end show a bit more of what one may call style.

5. “Stilus” or Metonymic Style

Th ere are few poetological and linguistic concepts that describe a fundamental property of language 
and are simultaneously an eff ect of that same property. “Style” is one of them. Latin etymology 
indicates that “stilus” originally denoted a sharp stake, used to break up soil in agriculture, in 
wartime in traps. Later it became the name for a tool for making marks in wax, made of wood, 
horn, or metal, one end sharp, the other fl at to smoothen the slab.6 “Stilus,” therefore, is a tool to 
write and to erase the written as well, a writing/erasing tool. Hans Ulrich Gumbrecht noted the 
metonymy that this binary tool of contradiction commences in the fi rst century BC. For as ancient 
Rome turned into an imperial monarchy and with the development of books and libraries the 
written document began to replace the politics of forensic orators, some hastened to invert the 
facts of the visible world on their writing pads. So “stilus” means not only pen, but also “the use of 
the pen . . . the practice of writing, the manner of the writer,” and even the “language of the writer” 
itself, the “stilus artifex.” Th is “feedback”-inversion of the “stilus” became the primary stylistic act 
of language. Gumbrecht quotes Cicero: “Vertit stilum in tabulis suis, quo facto causam omnem 
evertit suam.”7 “He inverts in his writing how he acts to destroy all his things.” Th e reversion of 
the pen, “stilum vertere,” now means to distinguish the written by writing. Th is is metonymy and 
thus is the thing—to use the “style” is the style, and vice versa. Can the written, in soft ware, make 
the written unrecognizable?

Cicero’s style relies on omission, setting up the economy of erasure for the greatest eff ect in 
speech. A diff erentiated conceptual history follows throughout all Latin, Scholastic and Renaissance 
rhetoric and poetics until the Enlightenment off ers this motto: “style is the man himself.” Style is 
supposed to be the bourgeois subject of speech and writing, the producing author liberating the 
free, but paid genius, from the formal prescriptions of past centuries. Th ere are aft er all some few 
books in computer science that warn against such unfettered subjective style exercises, but this is 
merely stupidity on both sides. In their Kafk a studies, both Friedrich Kittler and Bernhard Siegert 
demonstrate how in the end style is always derived from media eff ects, which with the rise of 
technical media exert their eff ect also on literature.8

In the fi rst century BC, when “stilus” became metonymical and in the concept of style a scrip-
tural tool became its own eff ect, the next media transition, a new media a priori, sets its shift  in 
motion. For the arms and hands of Cicero, Sallust, Terence or Caesar rest less and less on papyrus 
and more and more on the caudex, the bound book of wax slabs, as well as the codex of vellum. 
Both caudex and codex complement the y-axis (of a script roll and continuity of text) with an x-
axis of the page, and a z-axis, the number of pages. Th is brings writing into a three-dimensional 
order for the fi rst time in history, and thus makes it accessible as script/text with the aid of numeric 
and other symbols: page numbers, paragraphs, indents, marginalia, sections, chapters, comma, 
hyphen, colon and semicolon. Now one can know of a writing that one does not see, but which 
is referred to as if it were visible, a virtualizing eff ect of the codex and the birth of style. With the 
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rise of the printing press in the 15th century, all those codex-symbols, never incorporated in the 
standard alphabet, were incorporated into another code—that of mathematics.9 And so we arrive 
at the symbolic basis of the style of programming.

6. Th e Signs of the First Programs

What was the fi rst computer program and what were its fi rst symbols? Th is is like asking: what were 
the fi rst computers in history? It is well known that there are no satisfying answers. Th e MARK 
computers by Howard Aiken, Konrad Zuse’s Z3, Turing’s COLOSSUS and ACE-machine, and 
Mauchly-Eckert’s ENIAC participate in the fi rst developments. Th ere is a ubiquity of beginnings, 
a dissipation of the mechanic start up of the computer.

6.1. Dissipative Evolution

Th e historical facts about the huge engineering boom in America in building calculators and com-
puting machines aft er 1941 are well known enough. Th at technological evolution pivoted upon the 
need to calculate a growing number of “fi ring tables” for all possible fl ying objects and projectiles, 
and later the famous ENIAC addressed the so-called hydrodynamic Los Alamos Problem. Th e 
numeric calculation of shock wave equations of an H-bomb implosion was carried out on the 
ENIAC during three long months, beginning in October 1945.10

6.2. Zuse

Th e loner Zuse, in his sparse rooms in the German Experimental Institute for Aeronautics around 
1940, cut off  from the world of scientists and lost in the chaos of the National Socialist research 
administration, nevertheless deserves a good credit for important parts of the evolution of the 
computer—particularly with respect to the deep structure of developing programmable calculators, 
which cannot be restricted to the eff orts of Turing or von Neumann, but go back to the mathemati-
cal problems of Hilbert, Ackermann and Frege. Zuse responds directly to them, as Turing and von 
Neumann did implicitly. Th erefore we can assume that even without Turing, the debates about the 
axiomatics and foundations of mathematics in the 1920s could have led to the computer. Given 
what we know today, the diff erence between German and American computer development is not 
caused by a scientifi c gap (with mathematical and logical bases), but a due to the huge diff erences 
in military and industrial support. America and England had grown their military-industrial-aca-
demic complex continuously, arguing with what they thought the Germans were going to develop 
before all else and reinforcing their eff orts by the massive investment in Los Alamos. In 1942, the 
“Manhattan Project” united 2,500 scientists in America and England, Goldstine, Mauchly, Teller 
and von Neumann, as well as Turing. Konrad Zuse, in contrast, worked partly on his own and partly 
for an organization pulled apart by the competing interests of the Wehrmacht, the SS, the Navy 
and the Airforce, misjudged and not institutionally recognized or supported. However in the end, 
his infl uence aft er the war would even extend to the conferences of ALGOL 58 and ALGOL 60, 
if only because the Z4 and Zuse’s own programs were saved, and some of his developments were 
known to Rutishauser, who brought the knowledge and Zuse’s name to the U.S.11

6.3. ENIAC

One always says very generally that John von Neumann introduced elementary concepts of the 
Turing machine into the computer boom dominated by the Americans. But we can specify the 
historical time and place, namely the ENIAC team between spring and fall 1944. Here von Neumann 
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is on a team with Brainerd, Goldstine, Eckert, Mauchly, and Burks, and these team-mates share 
the claim to have invented sequentially stored programming, although it is usually associated only 
with von Neumann—all the more since this was an engineering advance that inevitably followed 
from the architecture of the ENIAC.12 

6.3.1. Research Inputs With its 18,000 tubes, the ENIAC was the fi rst computer of such size—the 
model for the admired post-war “electronic brains” and the fi rst proof in the history of technology 
that switches of this magnitude were possible. Contemporaries also knew which major engineering 
trends helped develop this computer. Contributing to the hardware were:

• the electronics industry which had reached a peak boom in receivers and transmitters in 
its radio days

• the mechanical and electromechanical industry active in arms production
• robust 100KHz tubes from radar technology. 

Figure 9.1 ENIAC layout.
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Contributing to the computer architecture were:

• Vannevar Bush’s diff erential analyzer as a model for machine organization,
• IBM switchboards for control, and experiences from Bell Labs and Aiken’s MARK I. 

All of these were the research input for ENIAC, which led inevitably to the concept of stored pro-
grams. ENIAC has two successor generations, the IAS, the WHIRLWIND (we will come back to 
this) to the IBM 700, which more or less directly leads into the present and to the more academically 
oriented product lines EDVAC, EDSAC and UNIVAC, which we will also encounter again.

6.3.2. Extension and Construction Th e ENIAC consists of four accumulators; one square rooter 
unit; one multiplication unit; three complex switchboards for matrix calculation; on the bottom 
left , the three control units and on the right, the punch-card input and output.13 Each of these units 
had to be “programmed” fi rst, that is wired together.

6.3.3. Programming Th e programming of ENIAC fell into two separate areas, numerical pro-
gramming and, what the ENIAC-team called “programming proper.”

Figure 9.2 Programming of an accumulator 

unit. Wiring diagram for IBM 601 plugboard.
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6.3.3.1. Numerical Programming Th e illustration shows the “programming” of an accumula-
tor unit as used in the ENIAC. On top you see the set calculation “a*b+c+d.” Working with these 
interfaces was called numerical programming, as Arthur Burks reports, and depending on the 
formula calculated, it had to be done for all accumulator, square root, or function units separately. 
For the most part, this specialized labor was carried out by the “ENIAC girls.” In order to keep 
track of the sequence of such numerical programming, block diagrams such as the one shown in 
Figure 9.3 were used.

Th e diagrams determined what had to happen in the various units of the ENIAC, which accu-
mulator would calculate which part of the formula, etc. One might call it numerical programming 
assignment, a fi rst kind of addressing, for the accumulators were nothing but the intelligent storage 
cells of the calculator. Th ere was no generalized symbolic notation for their coding, i.e., a plan for 
their connection. In such process diagrams, we fi nd the predecessors of the fi rst programming 
routines, as well as one of the oldest representations of calculation. For the Greeks drew their geo-
metric fi gures and their derivations in a “diagramma”—and this was also the name of a scale, since 
musical sequences were understood as derived from cosmic geometry. For the ENIAC, program 
sequences are noted in diagrams, as the graphic interface between the mathematics of the formula 
to be calculated and the electronic plan for their numeric solution. Th e concrete implementation 
of such diagrams was laconically called “programming proper”—as if nothing was easier.

6.3.3.2. Programming Proper Programming proper consisted in synchronizing the separate 
units with the digit trunk or data bus on the one hand, and with the seven parallel program lines 
on the other hand. To this end, there were further diagrams as shown in Figure 9.4.

Transmit and receive in the accumulator had to be connected by hand; the three program 
controls of each accumulator were connected to the bus of the program lines. Th is is basically the 
archetypal innovation of the ENIAC. Th e electromagnetic diff erential analyzer and Zuse’s machine 
still had a central, motor-operated unit controlling the speed of the calculations, like the inventions 
of Schickart or Babbage. ENIAC replaced those mechanical impulses with the completely new 
concept of ten bus cables upon which a cycling unit transferred a complex parallel pulse which 

Figure 9.3 Block Diagram. Block diagram illustrating method of solution of d 2 y/dt 2 = ky or Δ2y = k(Δt )2y.
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could be as fast as 3 micro-seconds, thus allowing switching at a veritable 3.3 KHz. Th e control of 
such a fast pulse had become possible with advances in radar technology. Once a program was set 
up, its running was static, with no recursions, inductions and conditional branching.14

6.3.4. Mercury Delay Lines It is obvious that the concept of stored programming developed 
from the tubes of the ENIAC and not from electromechanical calculators. Th e ENIAC provided a 
fast bus and its technology was robust enough to trigger impulse control-frequencies at 3.3 KHz 
running through a system the size of half a ballroom. Th is made it possible to approach mechani-
cally impossible storage problems, by inventing all sorts of impulse-controlled delays. In the case 
of the ENIAC the team used the so-called “mercury delay lines” that Turing in his work on the 
English ACE-computer had used also. Pres Eckert had developed them in the spring of 1944 for 
radar units—another input from radar research into the computer.15

Th e “mercury delay line” was a slim tube fi lled with mercury, here two meters long, that could 
delay a pulsating ultrasound signal up to a millisecond. A deft  switch allowed only ten tubes to 
refresh 1000 impulse bits in the space of a microsecond. Th e result was a phased electronic 1K-Bit 
storage unit for the cost of a few liters of mercury and ten tubes for ten dollars each. Th e mercury 
line was a revolutionary step: it reduced both the cost and the space required for memory at once 
by a factor of 100 to 1.

Between March and June 1945, the team built 32K of memory for data and program instruc-
tions for a new type of computer we now call the “von Neumann machine” by cascading 256 
such mercury lines. Th e storage blocks required a phased bus architecture, the bus address logic 
condensed the distributed accumulators, multiplying units and square rooters onto one unit—the 
central processing unit (CPU)—and the whole system thus demanded a central control. Far from 
Turing’s logic machines (which—as far as we know—was mentally not present in the ENIAC-Team 
and was defi nitely nothing von Neumann argued with), the synchronization of the described elec-
tronics architecture alone led to the legendary discrete sequentiality, giving up the generous parallel 

Figure 9.4 Simplifi ed ENIAC program diagram (from Burke: 1980).
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set-up the ENIAC still represented. Henceforth the guideline for the most successful machine type 
ever built by man was, in Burks’ laconic words: “One thing at a time, down to the last bit!”16 Single 
instruction, single data. In the arguments over the patent, John von Neumann would later admit 
that it was “practically impossible to list who was the apostle.”17 Th e innovation of binary storage 
and stored programming is anything but an invention or a defi ned patent. Moreover, the computer 
itself was not the end goal, neither for the engineers Mauchly and Eckert nor for the mathemati-
cian von Neumann.18 In the competition between diff erent architectures, the goal was to build 
another calculator that was able to solve nonlinear equations numerically, with great demands on 
rounding and induction. Nobody “invented” the computer as we know it now in the strict sense, 
nor did anybody want to invent it the way we know it now.

Von Neumann himself would soon go beyond this machine limited to mathematics that Turing 
had indeed described suffi  ciently, dedicating himself for another decade to the theory of automata 
and of machines that tolerate mistakes; von Neumann would write about cellular automata, ma-
trix inversions, and neuronal learning. Th e scientifi c paradigm of the war years that give birth to 
the most important medium of the century is not the computer itself, but what we associate with 
Claude Shannon, namely thermodynamics and entropy as elementary principles of information 
theory. Read what Claude Shannon wrote on John von Neumann in the late sixties, and you see how 
information theory and automata research are interconnected.19 For Shannon and von Neumann 
knew the problematic reliability of the “von Neumann machine” as well as any persons who ever 
had to deal with it. As Shannon writes: 

individual components must be built to extreme reliability, each wire must be properly con-
nected, and each order in a program must be correct. A single error in components, wiring, 
or programming will typically lead to complete gibberish in the output. [ . . . ] Th e problem 
is analogous to that in communication theory where one wishes to construct codes for 
transmission of information for which the reliability of the entire code is high even though 
the reliability for the transmission of individual symbols is poor.20

Von Neumann’s work on this topic concludes that reliable systems consisting of unreliable parts 
are possible if either the redundancy of parallel but similar components or their redundant con-
nections are fantastically high.21 

7. Von Neumann’s Scores

Aft er the question of the evolution of the “von Neumann machine,” our interest turns to the ques-
tion of how von Neumann programmed it. With the aid of Donald Knuth and Luis Pardo, I want to 
off er a provisional answer. Let us proceed with a rather useless little program written in ALGOL60 
so as to not overly complicate the matter. 
  

ALGOL 60:    
begin INTEGER i; REAL ARRAY a[0:10];    

REAL PROCEDURE F(t); REAL t; VALUE t;   
     f := sqrt(abs(t)) + 5 + t3 ;   

     for i := 0 step 1 until 10 do read(a[i]);   
     for i := 10 step -1 until 0 do   
            begin   
          y := f(a[i]);   
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          if y > 400 then write(i,”value too large”)   
               else write(i,y);   
            end;   
     end.   
   

Th e mere point of this program is that it contains the eleven-fold iteration of a formula that calcu-
lates the value of an eleven-digit array of REAL numbers in the inverse order of their input; if the 
result is > 400, the program issues a warning; if the result is smaller, it yields the numeric value. In 
von Neumann’s notation, this program would look like Figure 9.5.

In three long pamphlets entitled “Planning and Coding Problems for an Electronic Computing 
Instrument” for the Army Research and Development Department, von Neumann explained this 
technique of programming. Th is is the stuff  of advanced mathematics classes and I cannot go into 
it here. But I follow our colleague Jörg Pfl üger in calling what you see here not a programming 
language but “planning”—on the one hand, a systematic planning diagram where the parts to be 
coded are simply entered into well defi ned boxes, and on the other hand a very open and repeat-
edly revised code notation which you do not see here, by which the people coding would execute 
what the diff erent boxes of the diagram describe. Th e diagram itself is a loop of loops leading from 
i to e. I already referred you to the ancient Greek diagramma which also denotes a tonal system. 
Th us we may read this diagram more like a musical score than like a written notation of language. 

Figure 9.5 Von Neumann’s score.
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Th e rectangular boxes represent a mathematical orchestration of the work, while the parts and 
instrumentation are to a large extent free.

I have to limit myself to a few explanatory remarks. First you see that von Neumann leaves the 
scaling of the memory, the bitmapping of number types to the programmer. One had to get used 
to this. In the second box from the top on the left  side for instance you read: “10*2 to the power of 
minus 39 to C.1”—which means 10 units of 40 bits each: set 10 40-bit words in storage area C.1. 
Th ere are four types of boxes in this diagram: 

1. “Operation boxes,” which have a roman numeral, as in the box III, where aft er the 10th bit 
of the 40-bit word the arithmetic unit inserts the result of the formula “root of absolut a plus 
5 a to the power of 3” with the order to shift  the value to point D in the storage. 

2. “Alternative boxes,” also with roman numerals, which branch out depending on their prefi x 
of the box value. For instance, in the straight line from i to e you see a box II inscribed with 
“i” which then branches to the lower right if i >+0, and to the left , in this case straight, if i is 
negative (smaller than zero). 

3. “Substitution boxes,” marked by a cross outside and an arrow inside. Th ey do not signify 
code instructions but tell the reader of the diagram only how the value of a diagram variable 
has to be addressed. 

4. “Assertion boxes,” which simply give the value of variables, such as the last box on the straight 
line to e, i =–1, which means: the iteration is over.

Th us we can say that von Neumann’s fl ow charts represent a graphic programming language. 
Th ey show certain validation properties and commutative elucidations that have nothing to do 
with coding, but tell the programmer what happens to the operative variables and memory values 
when they re-enter a coded block.

Let us leave it at these hints. I have addressed only the most obvious attributes of the fl ow chart 
diagram, but it may suffi  ce to remember Jörg Pfl üger’s statement: von Neumann had nothing like 
a concept of language in his mind. Even more, “planning and coding” does not raise the question 
whether it is possible to address a computer with a coherent symbolic notation. I show you this 
complicated fl ow chart to reveal how von Neumann suggested computers be addressed, namely by 
non-language means. Although they go together in even the most formal language, the planning 
score, which we see here keeps the four essential mechanisms separate: operation from alternation, 
alternation from substitution and substitution from assertion. Th ere are no generative symbols, no 
substitutions of sign values, no literal or syntactic assertion, simply because the fl ow chart never 
even tries to furnish proof of its own correctness. Th is dissection of the structure of language is 
due to the changed levels, to the way the fl ow chart alternates concrete descriptions of operations 
with descriptions of description. In this way von Neumann prevents mathematical nonsense from 
creeping into his notation (think for instance of the simple mathematical nonsense in the C-com-
mand “x=x+1”). Let us be clear: the fi rst manner in which von Neumann addresses the computer 
implements the conviction that programming does not require language. An egregious error by 
von Neumann, or shall we call it prudence?

Behind “planning and coding” we recognize a neat division of labor, if you will. Th e fl ow charts 
are reminiscent of what was in use before the von Neumann machine, and they can be read as a 
kind of perfection of the ENIAC diagrams. In this respect they also rely on programmers’ hab-
its. And since we know that the accumulators and function tables were largely operated by the 
“ENIAC girls” only and that the box-logic of the fl ow charts is nothing but a permutation of ENIAC 
diagrams, then planning and coding, although not a language, still has a lot to do with men as 
architects and women as coders—with a diagrammatic chasm, if you will, that is so self-evident 
that it is too easily overlooked.
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8. Priesthood and Revolution

Perhaps we should add that the fl ow chart technique of programming as developed by von Neumann 
and Goldstine has remained rather theoretical. It was not implemented regularly on any calcula-
tor but rather served as conceptual crutch. Since the published and much discussed concepts of 
the ENIAC team—the technology of binary stored programming—there have been engineering 
solutions: immense sums were invested all over the U.S. to build computers, but there was no clear 
concept of how they should be addressed. What, therefore, was programming in the early fi ft ies? 
According to John Backus:

Programming in the early 1950s was really fun. Much of its pleasure resulted from the absurd 
diffi  culties that “automatic calculators” created for their would-be users and the challenge 
this presented. Th e programmer had to be a resourceful inventor to adapt his problem to 
the idiosyncrasies of the computer: He had to fi t his program and data into a tiny store, 
and overcome bizarre diffi  culties in getting information in and out of it, all while using a 
limited and oft en peculiar set of instructions. He had to employ every trick he could think 
of to make a program run at a speed that would justify the large cost of running it. And he 
had to do all this by his own ingenuity, for the only information he had was a problem and a 
machine manual. Virtually the only knowledge about general techniques was the notion of 
a subroutine and its calling sequence. [ . . . ] Programming in the early 1950s was a black art, 
a private arcane matter involving only a programmer, a problem, a computer, and perhaps a 
small library of subroutines and a primitive assembly program. Existing programs for similar 
problems were unreadable and hence could not be adapted to new uses. General program-
ming principles were largely nonexistent. Th us each problem required a unique beginning at 
square one, and the success of a program depended primarily on the programmer’s private 
techniques and invention. [ . . . ] 

Just as freewheeling westerners developed a chauvinistic pride in their frontiersmanship 
and a corresponding conservatism, so many programmers of the freewheeling 1950s began 
to regard themselves as members of a priesthood guarding skills and mysteries far too com-
plex for ordinary mortals. [ . . . ] Th is attitude cooled the impetus for sophisticated program-
ming aids. Th e priesthood wanted and got simple mechanical aids for the clerical drudgery 
which burdened them, but they regarded with hostility and derision more ambitious plans 
to make programming accessible to a larger population. To them, it was obviously a foolish 
and arrogant dream to imagine that any mechanical process could possibly perform the 
mysterious feats of invention required to write an effi  cient program. Only the priests could 
do that. Th ey were thus unalterably opposed to those mad revolutionaries who wanted to 
make programming so easy that anyone could do it.23 

You may know this passage from Backus’ report on the founders’ years of FORTRAN well enough 
so I do not have to comment at length. But it leads us in a few sentences, and this is my intention 
in quoting it, to another stage, namely computers as media as well as machines. Th is stage would 
take another two or three decades, yet it was already discernible: something has started to produce 
priesthoods, mysteries and revolutionaries, something of considerable factual and economic 
impact as well as of immense technical importance, and it was expressing itself already without 
having a language. Somehow, we may understand from Backus, an imperative is indicated in the 
vehemently growing world of computers in the fi ft ies, an imperative that makes priests, pioneers 
and revolutionaries dance around a golden calf, and the author of all these metaphors is none other 
than John Backus, who wrote probably the most infl uential programming language in computer 
history, namely FORTRAN. He concludes his “confi teor” with the sentence, “I am the culprit.”
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Perhaps to the uninitiated, to those who are not computer scientists, this mystery which is no 
mystery continues. So I insert a clarifying remark: John Backus wrote this in 1980, aft er his third 
important intervention in the history of programming languages, namely the Turing lecture of 1979 
entitled “Can we be liberated from the von Neumann style?” Th us he discredited all the attempts to 
defi ne languages in the way he and others had done before and aimed in the direction of a math-
ematically founded functionality. But even these attempts didn’t solve the problem he describes in 
his retrospection. For at the birthof his language—the language he was going to specify and whose 
style would dominate the medium for many decades, perhaps until today—there way no language 
yet, but only a linguistic climate, as it were, an imperative, a denial as well as a demand.

SHORTCODE (sugg. John W. Mauchly, by William F. Schmitt, 1950)   
Memory “Variable” i = W0, t = T0, y = Y0   
11 inputs are addressed to the following words: U0, T9, T8, . . . , T0   
constant: Z0 = 000000000000   
 ZI = 010000000051   
 Z2 = 010000000052   
 Z3 = 040000000053   
 Z4 = $$$TOO$LARGE   
  Z5 = 050000000051 [5.0]   

“Equation number recall information” [Labels]: 0 = line 01, 1 = line 06, 2 = line 07   
   Short Code:   
     Equations                                                 Coded representation   
—————————————————————————————————————  
 00 i = 10 00 00 00 W0 03 Z2   
 01  0: y = (sqrt abs t) + 5 cube t T0 02 07 ZS 11 T0   
 02  00 Y0 03 09 20 06   
 03 y 400 if<=to 1 00 00 00 Y0 Z3 41   
 04 i print, ‘TOO LARGE’   
  print-and-return 00 00 Z4 59 W0 58   
 05 0 0 if=to 2 00 00 00 Z0 Z0 72   
  06  1: i print, y print-and-return 00 00 Y0 59 W0 58   
  07  2: T0 U0 shift  00 00 00 T0 U0 99   
 08 i = i – 1  00 W0 03 W0 01 Zl   
 09 0 i if<=to 0 00 00 00 Z0 W0 40   
 10 stop 00 00 00 00 ZZ 08   

Code-Equivalents:   

01 - 06 abs value ln (n+2)nd power 59 print and return carriage   
02 ) 07 + 2n (n+2)nd root 7n if= to n   
03 = 08 pause 4n ifsto n 99 cyclic shift  of memory   
04 / 09 ( 58 print and tab  
                                               Sn, Tn, . . . , Zn quantities   

Th e fi rst implemented programming concept, as claimed since 1977 without contradiction, was 
Short Code. It is a language of imperatives, which simply follows an imperative. Th is concept also 
stems from the eff orts of the ENIAC team—not from the mathematical corner around Goldstine 
and von Neumann, but from the technical pragmatism of John W. Mauchly. In 1949 he suggested 
this simple algebraic interpreter language, which you see here implementing our stupid algorithm. 
You will observe that it is “readable”—line 00 initializes i=10, line 01 the label 0, and behind it the 
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square root formula. Th e interpreter jumps back there until line 08 assumes the value “–1.” Already 
quite classical and very “spaghetti”-like.

I do not want to detain you with details, although some aspects might be rather interesting. 
Short Code was implemented on a UNIVAC in 1950 and already off ered the programmer an 
“electronic dictionary,” as the ACM magazine put it. Each arithmetic operation had a short code, 
hence the name. You see some of these short codes in the lower section. Short code did not know 
arrays, yet it shift ed stored words cyclically, for instance in line 07. Th e simplifi cations are obvious: 
a limited dictionary of computer operations is born describing immediately what is to happen to 
the operands. Evidently the seeds of a language.

“With Short Code,” the Remington Rand Corp. announced, “every mathematical equation can be 
evaluated by the mere means of notation. Th ere is a simple symbolic transformation of  equations into 
code [ . . . ] the necessity for special programming is eliminated. In our comparisons of computing 
time we observed a speed increase of at least 50:1 in comparison to manual programming.” Aft er 
the hundredfold gain in memory by the von Neumann machine, it was now a matter of gaining 
human storage as to become constitutive of a language—that is to say, of gaining time. Lacan would 
be happy getting this: programming history defi nes language as an instance of gaining mere storage 
time. Further: “Short Code will demonstrate its power as a tool in mathematical research and as a 
checking device for some large-scale problems,” which means that it will also be checking priest-
hoods in Backus’ sense, by means of a “simple tool,” which will test mathematical arcana.24

9. FORTAN and Mariner I

Short Code is mentioned only because of its being the fi rst putative interpreter language in com-
puter history. It stems from the ENIAC team, just as von Neumann’s concepts did. Otherwise it 
could not plead for much historical signifi cance, like so many developments from the early years, 
although it represents quite well what everybody was looking for some years later, namely an al-
gebraically oriented programming language. Short Code disappeared from the scene because the 
Remington Rand UNIVAC was used only by a small number of scientists. Th e pivotal condition for 
the scientifi c solution of complex problems was still missing, namely communication. Look at Jean 
Sammet, Grace Hopper, John Backus or anybody else—the late forties and early fi ft ies in America 
are determined by the absence of what could be called a discourse on the linguistic speech-based 
control over the new digital computers. Th ere was no national or international exchange, hardly a 
conference, no periodical publication until 1954. Th is further supports the thesis that the computer 
as the von Neumann machine was not a consciously assigned goal of the research organizations 
and of the scientifi c world in the U.S.

Th is is why the path to FORTRAN, which we will briefl y outline, had to follow from another 
large-scale military project of the now icecold Cold War, the WHIRLWIND computer built at MIT 
in seven(!) years between 1945 and 1952. Since 1951 it had become the backbone for the “Semiau-
tomatic Ground Environment Air Defense System” (SAGE), the fi rst large computer project of the 
Air Force and the Navy. One must never forget that this very fi rst net of computers ever built in 
the history of mankind is to be seen at the same time as the great grandfather of today’s Internet, 
even though it had yet to experience the “EMP” shock of the hydrogen bomb.25 Th e WHIRL-
WIND-computer (commanding the SAGE-net) not only connected regular radar oscilloscopes 
(or television screens) with a computer for the fi rst time on a regular basis, it not only featured 
such puzzling devices as “light guns” touching the goals on the screen directly (later, in the ’70, 
disarmed to “cursors” and “mouses” by the PARC-kids in Palo Alto, getting from there right into 
the fi rst Mac’s surfaces . . . ) and probably the fi rst keyboard ever, but it also attracted a huge crowd 
of scientists interested in programming, because the military organization of research worked as 
well as the scientifi c one did not.
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1   v|N = {input},
2   i = 0,
3 1 j = i + 1,
4   a|i = v|j,
5   i = j,
6   e = i – 10.5,
7   CP 1,
8   i = 10,
9 2 y = F1(F11(a|i)) + 5(a|i)3,
10   e = y – 400,
11   CP 3,
12   z = 999,
13   PRINT i, z.
14   SP 4,
15 3 PRINT i, y.
16 4 i = i – 1,
17   e = –0.5 – i,
18   CP 2,
19   STOP

Th e language “style” which we see here was called “Laning/Zierler Algebraic Compiler” and was 
developed on and for the WHIRLWIND. Th e participants of the 1954 Offi  ce of Naval Research’s fi rst 
computer language conference were enthusiastic, although it does not live up to what is nowadays 
expected from a compiler.

A quick glance at how it works: the variables v and a are each indicated or subscribed by a vertical 
line to form an array, CP 1 or 3 in line 7 or 11 means a conditional jump order in the assembler style, 
namely, if the previous instruction yielded a negative result, jump to label 1 or 3. F to the power of 
1 is the square root instruction; F to the power of 11 means an absolute instruction; lines 3 through 
8 iterate in order to read the input v in to the variable a; lines 9 through 18 represent the core loop. 
Aft er a few minutes, most of you will be able to read this Laning/Zierler Compiler well.

Now I want to quote what John Backus, the revolutionist, wrote in 1954. Th e Laning/Zierler 
Compiler immediately instigated the development of FORTRAN at IBM right aft er the conference 
in 1954 taking 18 man-years including the compiler. Backus writes, “a programmer may not be 
considered unreasonable if all he wants is formulas for the numerical solution of his problem, and 
perhaps a plan that shows him how his data are shift ed from one storage hierarchy into another . . . No 
doubt, if he was to pursue this vigorously next week, he would be a psychiatric case, but perhaps 
next year he would be taken more seriously.”26

Here is the result, less than a year later, in November 1954: the IBM FORmula TRANslation 
System, FORTRAN 0, developed under the auspices of John Backus:

1   DIMENSION A(11)
2   READ A
3   2  DO 3,8,11 J=1,11
4   3 I=11-J
5   Y = SQRT(ABS(A(I+1))) + 5*A(I+1)**3
6   IF (400. >=Y) 8,4
7   4 PRINT I,999.
8  GO TO 2
9   8 PRINT I,Y
10 11 STOP 
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We think that FORTRAN off ers a useful language for the formulation of problems which 
are fed into a machine solution . . . Aft er one hour of instruction in FORTRAN, the average 
programmer will have completely understood the steps of writing a procedure in FORTRAN, 
and this without any further comments.27

I will not say anything new about FORTRAN; the DIMENSION declaration in line 1 of course 
demands an eleven-digit array of REAL numbers; line 2 reads them; line 3 shows the legendary 
DO statement in FORTRAN which in its 0-version denominates the start and end label, so in 
other words line 3 says: iterate from line with label 3 to line with label 8 until the variable J takes 
the value 11, then go to label 11 and end. Th e IF-statement was only binary then, but otherwise it 
is simple FORTRAN.

Here, in the language of the “lazy character,” as Backus occasionally called himself, we also fi nd 
the legendary programming error which made the Mariner I miss Venus by far (July 1962), and left  
its imprint on the soft ware crisis of the 1970s: Instead of “DO 3 I = 1,3” the program read “DO 
3 I = 1.3.”28 Th is mistake could not be recognized by the 18 man-year compiler project of IBM-
FORTRAN whose speed still made Backus proud in 1980, because in the defi nition of FORTRAN 
spaces are not signifi cant, owing to the fact that FORTRAN relied on punch cards where space has 
no signifi cance. Consequently, because of a stop instead of a comma between 1 and 3, the result was 
interpreted as implicit declaration of the variable DO3I with a real value of 1.3, whereas it would 
have been correct to initiate a threefold iteration of all the program lines that we do not see here 
until the mark CONTINUE and the label 3. Needless to say, this is not just computer folklore.

10. Epilogue

Th e genesis of programming language styles up to and including FORTRAN is the genesis, as we 
know, of procedural and imperative languages. Th e fundamental weakness of these languages is 
something I do not have to impress upon computer scientists. And it is clear that declarative and 
functional languages are at least logically superior to the ones shown here, so I agree with Jörg 
Pfl üger’s thesis that the newer generation of object oriented languages represent an interesting 
synthesis of procedural structurability and functional logic design.

Th is paper presented a fi rst draft  discourse analysis containing a hypothesis on the develop-
ment of programming languages. Strangely they do not stem from the recourse to a logical model, 
although the machines they control are explicitly based upon such a model. Th is remains a con-
tradiction still to be resolved. Th e same goes for the question why those who developed the design 
of the machine, with full knowledge of the basic logical model, did not recognize that there is a 
demand for an eff ective and well-defi ned language in order to address that machine. My thesis is 
that for decades, the arché-structure of the von Neumann machine did not reveal that this machine 
would be more than a new calculator, more than a mighty tool for mental labor, namely a new 
communications medium. Th e development of FORTRAN demonstrates all too clearly how the 
communication-imperative was called on the machine from all sides. Th at imperative call obvi-
ously could not be detected in the arché-structure of the machine itself. It grew out of the Cold 
War, out of the economy, out of the organization of labor, perhaps out of the primitive numeric 
seduction the machines exerted, out of the numbers game, out of a game with digits, placehold-
ers, fort/da mechanisms, and the whole quasi-linguistic quid pro quo of the interior structure of 
all these sources.

At any rate, communications media always have the structure of language, as we know since 
Freud. Th is side of and beyond explicitly spoken languages, they are characterized by the insistence 
of their inherent signifi er, that is to say by contiguities and substitutions whose eff ects and traces 
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can be visualized in graphs and diagrams, not in logical but in probabilistic and still unpredictable 
rules of generation.
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